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Abstract

Mountain regions are highly sensitive to global climate change. However, large scale
assessments of mountain environments remain problematic due to the high resolu-
tion required of model grids to capture strong lateral variability. To alleviate this, tools
are required to bridge the scale gap between gridded climate datasets (climate mod-5

els and re-analyses) and unresolved (by coarse grids) sub-grid mountain topography.
We address this problem with a sub-grid method. It relies on sampling the most im-
portant aspects of land surface heterogeneity through a lumped scheme, allowing for
the application of numerical land surface models (LSM) over large areas in mountain
regions. This is achieved by including the effect of mountain topography on these pro-10

cesses at the sub-grid scale using a multidimensional informed sampling procedure
together with a 1-D lumped model that can be driven by gridded climate datasets. This
paper provides a description of this sub-grid scheme, TopoSUB, as well as assessing
its performance against a distributed model. We demonstrate the ability of TopoSUB
to approximate results simulated by a distributed numerical LSM at around 104 less15

computations. These significant gains in computing resources allow for: (1) numerical
modelling of processes at fine grid resolutions over large areas; (2) extremely effi-
cient statistical descriptions of sub-grid behaviour; (3) a “sub-grid aware” aggregation
of simulated variables to course grids; and (4) freeing of resources for treatment of
uncertainty in the modelling process.20

1 Introduction

Mountain regions extend over a large portion of the global land area and significantly
influence climate as well as human livelihoods (Barnett et al., 2005; Gruber, 2012;
Immerzeel et al., 2010). Complex topography in mountain regions causes high lateral
variability of the surface-atmosphere boundary by: (a) altering the local energy and25

mass fluxes between the ground and the atmosphere (caused by e.g. air temperature,
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shading, precipitation gradients); and (b) influencing subsurface properties (e.g. dry
bedrock in steep slopes, fine sediments and abundant water in valleys). Mountain en-
vironments are currently undergoing rapid and significant change worldwide due to
global changes in the earth’s climate e.g. warming mountain permafrost (Harris et al.,
2003; Isaksen et al., 2001); retreat of mountain glaciers (Paul et al., 2007; Zemp5

et al., 2006; Barry, 2006); and reduction of snow cover in many regions (Laternser
and Schneebeli, 2003; Mote et al., 2005). In order to understand the impact of these
changes, both now and under a future climate, tools are required to enable numerical
modelling of physical processes that occur across a range of spatial scales.

Global climate models (GCM) and regional climate models (RCM) are able to gener-10

ate continuous and physically consistent fields of climate variables for the observational
period and for scenarios of future climatic conditions. However, the coarse grids such
models operate on (∼10–500 km) limit the ability to resolve the interactions and feed-
backs between the land surface and climate systems in complex topography, which
is characterised by strong variability and non-linear processes at the sub-grid scale15

(Giorgi and Avissar, 1997). A wealth of surface models exist which are capable of sim-
ulating processes in mountain regions on fine grids (∼1–100 m) and can be driven
by coarse grid data with suitable regionalisation techniques (e.g. Bartelt and Lehning,
2002; Gruber et al., 2004; Klok and Oerlemans, 2002; Paul and Kotlarski, 2010)), how-
ever the strong fine-scale variability of mountain systems (cf., Gubler et al., 2011; Rise-20

borough et al., 2008) precludes the application of distributed numerical models over
large areas. Therefore, the problem remains that despite the near-global availability of
high-resolution digital elevation models, global climate datasets and suitable numerical
methods, land surface processes in complex topography remain poorly quantified in
many aspects (Fig. 1).25

This problem of scale has been previously approached through various forms of
sub-grid parameterization. This term can be defined as capturing the spatial variability
of a modelled process at a suitable resolution, while reducing the demands for data
and computation, by approximating its fine-scale distribution at a lower resolution (e.g.
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Hebeler and Purves, 2008; Giorgi and Avissar, 1997). Previous sub-grid approaches
can be broadly classified as either discrete mosaic types or continuous probability den-
sity function (PDF) schemes (Wood et al., 1988; Avissar, 1991; Giorgi and Avissar,
1997). This distinction can also be conceptualised as the modelling of sub-grid inter -
patch and intra-patch heterogeneity (Giorgi and Avissar, 1997). In mosaic approaches,5

a number of homogeneous subregions (“tiles”) are defined at the sub-grid scale, each
with its own energy, momentum and water budget. The surface flux calculations are
computed separately for each tile. Aggregation to the coarse grid is performed by aver-
aging over the tiles which are weighted by their fractional cover (Avissar and Pielke,
1989; Koster and Suarez, 1992). Models differ on how these tiles are discretised.10

For example, Seth et al. (1994) and Dimri (2009) used a regularly spaced finescale
sub-grid. Alternatively, a series of discrete classes based on surface vegetation type
(Avissar and Pielke, 1989; Koster and Suarez, 1992) or topographical elevation (Leung
and Ghan, 1995) have been used. Kotlarski (2007) developed a dynamic mountain
glacier sub-grid parametrization for inclusion in RCM’s which explicitly accounts for run15

off generation and adjusts glacier area (dynamic tile) based on accumulation/ablation
conditions. PDF-based approaches attempt to describe the variability of sub-grid char-
acteristics through analytical or empirical distribution functions (Avissar, 1991; Famigli-
etti and Wood, 1994; Liang et al., 2006). This is based on the assumption that surface
characteristics as well as climatic forcings vary according to distributions that can be20

approximated by the given PDF. This approach then explicitly calculates gridbox av-
erage surface fluxes for a surface variable distribution using numerical or analytical
integration over the appropriate PDF. Walland and Simmonds (1996) used sub-grid
statistics (variance, kurtosis) of distributions of topographical parameters to improve
the simulation of the snowpack in GCMs.25

Mountain regions exhibit more relevant dimensions which control land surface pro-
cesses than flat areas (e.g. elevation, aspect, slope, etc.). This means that a simple
mosaicing of the land surface is not appropriate and a more sophisticated technique
is needed to account for this heterogeneity. While, statistical models exist (e.g. Boeckli
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et al., 2012) which provide good 2-D representation in complex topography, they usu-
ally do not resolve transient changes.

In this paper we describe a sub-grid method which samples the most important as-
pects of land surface heterogeneity based on input predictors (PREDs) which describe
important dimensions of variability in complex topography. A lumped scheme then al-5

lows for the efficient application of numerical land surface models (LSM) over large
areas. Aggregation of simulated target variables (TVs) to the coarse grid and spatiali-
sation to the fine grid is achieved through a statistical technique based on membership
functions. We use cumulative distribution functions (CDF) of TVs to provide rapid ag-
gregated statistics of sub-grid behaviour over large areas. This Topographic SUBgrid10

tool (TopoSUB) allows for: (1) modelling of processes at fine grid resolutions, (2) effi-
cient statistical descriptions of sub-grid behaviour, (3) a “sub-grid aware” aggregation
of simulated TVs to coarse grids and (4) enables validation of results with fine-scale
ground truth. The strength of the scheme is its ability to compute numerical simulations
by several orders of magnitude faster than a distributed model and therefore free re-15

sources for spatially or temporally expensive simulations as well as for exploring uncer-
tainties in input data (e.g. climate projections) or LSM parameters and physics. While
we acknowledge a lumped approach compromises on 2-D representation (e.g. snow
redistribution, surface runoff) it enables the application of sophisticated 1-D physics
over large areas.20

This paper provides a proof of concept of this tool by describing the method, pro-
viding guidance on parameter selection and performing validation experiments against
baseline distributed model simulations. Whilst TopoSUB is designed as a tool for use in
complex topography – it is thought the concept may also be of interest to communities
outside of mountain environment related disciplines where alternative dimensions of25

variability are important.
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2 Generic Methods

2.1 K -means clustering

Samples are formed using the K -means clustering algorithm of Hartigan and Wong
(1979), an unsupervised learning algorithm which is a suitable for clustering multidi-
mensional data. K -means aims to partition all points into K clusters such that the total5

sum of squares (or squared deviations) from individual points (pixels) to the assigned
cluster centroids in multivariate attribute space is minimised. This then represents an
optimal clustering of points in attribute space for prescribed number of samples. The
algorithm is composed of the following steps:

1. Randomly place K points into the space represented by the objects that are being10

clustered. These points represent initial group centroids/seeds.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a sepa-
ration of the objects into K clusters from which the metric to be minimized can be15

calculated.

Although it can be proven that the procedure will always terminate, the K -means algo-
rithm is sensitive to the initial configuration of cluster seeds and does not necessarily
find the optimal configuration (Kanungo et al., 2002), corresponding to the global ob-
jective function minimum (as opposed local minima). The K -means algorithm is run20

multiple times to reduce this effect.
The K -means algorithm has three important controlling parameters, K number of

clusters, iter.max maximum allowed iterations of the algorithm and nstart number
of random starts. Fixing K at 128 samples, a sensitivity analysis was performed on
iter.max and nstart in order to define baseline parameter values to be used in Topo-25

SUB. Stable performance, as measured by within sum of squares (WSS) was achieved
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for iter.max=20 and nstart=10 (Fig. 2). Iter.max shows a much greater variation in
WSS over its range as it is an intrinsic part of the K -means algorithm. K -means is
significantly sensitive to initialisation i.e. location of initial cluster seeds. For this reason
it is highly recommended to run the model with several random starts and average the
results. A first run of K -means algorithm is performed on a sample of input data (105

5

pixels) with 10 random starts and maximum iterations set to 20 (as previously defined).
The cluster centres defined by this training dataset are used to initialise K -means for
the entire dataset (106 or more pixels). This allows for significant speed up (factor of
10, Table 1) while not compromising on quality of results.

2.2 Fuzzy membership10

In contrast to crisp membership (yes/no), fuzzy methods allow for varying degrees of
membership to multiple sets (Zadeh, 1965). A membership function is given valued in
the interval 0–1. We apply fuzzy membership functions to allow for varying degrees
of membership of pixels to multiple samples. Fuzzy methods of classification are use-
fully applied to multivariate classification problems when class overlap is required to15

represent continuous phenomena. The primary advantage of this method over crisp
classification is that fuzzy methods allow for high resolution mapping of the TV, whilst
accounting for topographic variability within each sample. Membership functions are
calculated in two steps. First, the standardised squared distance (d2) of the i-th pixel
from the n-th sample centroid C of the j-th attribute is determined by:20

d2
ni =

v∑
j=1

[(xni −Cnj )/Sdnj ]
2. (1)

where Sd is class standard deviation (Burrough et al., 2001). Then we can derive the
membership, µ of the i-th pixel to the n-th sample using the formula of Sokal and
Sneath (1967):
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µni = d2
ni

−1/(M−1)
/

K∑
n=1

d2
ni

−1/(M−1)
, (2)

n = 1,2, ...,K ,

i = 1,2, ...,

µci ∈ [0,1].
5

where M is the so called fuzzy exponent parameter. This parameter is a weighting
exponent and it controls the degree of fuzziness of the membership grades. As M
approaches 1, the clustering becomes crisper. As M becomes very large (i.e. M > 100),
membership becomes almost constant so that clusters can no longer be distinguished.
The scheme is sensitive to this value as it effectively changes the scheme from a10

crudely spatialised lumped model (all members of cluster receive same TV value) to
a more intelligently spatialised scheme that accounts for topographic variability within
each cluster.

The determination of an optimal value for M in a fuzzy classification process remains
an open question (e.g. Okeke and Karnieli, 2006; Burrough et al., 2000)). Commonly15

cited values in the literature range from 1.3 to 3 depending upon application. Okeke and
Karnieli (2006) propose a linear mixture model approach to optimise the value of M for
any given dataset. We found an optimum value to exist between crisp (M = 1) and very
fuzzy (M > 2) by iterating through values of M 1–2 in stages of 0.1. We identified 1.4
to give the most accurate results in majority TVs tested (compared with a distributed20

simulation). However, the optimal value of M is not the focus of the present study
and will not be further discussed. A standard fuzzy membership algorithm will compute
memberships for all pixels to all samples, resulting in a membership matrix of n samples
by p pixels. Even with the modest large area simulation we give in this paper, this
results in matrix of magnitude 108. In order to reduce storage demands we allow a25

reduced number of membership dimensions to be prescribed whilst preserving the
functionality of the algorithm.
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2.3 Statistical methods

Test distributions are compared with baseline distributions using a one-sample
Kolmogorov-Smirnov test (KS-test) which is a non-parametric test for the equality of
continuous, one-dimensional probability distributions that can be used to compare a
sample with a reference probability distribution. If the sample comes from distribution5

F (x), then the KS statistic, D converges to zero. Comparison of simulated fine grid
data against baseline grids is performed using the normalised root mean squared er-
ror (NRMSE) to allow comparison across simulated TVs of different scale ranges. The
RMSE is normalised against the standard deviation of the observations, being a robust
statistic that is less influenced by outliers than the range. Correlation statistics stated10

are Pearson product-moment correlation coefficients (r-value). CDFs are computed ac-
cording to the empirical cumulative distribution function in R statistical software.

3 TopoSUB methods

TopoSUB is designed to provide an effective approximation of a spatially distributed
grid with a lumped model. A key design principle of the tool is to be generic, allow-15

ing for choice of driving inputs (station data, gridded climate data), numerical model
and output (TVs, resolution) allowing for a wide range of possible applications. It has
two main modules (Fig. 3): a pre-processor to run only once and a post-processor to
run many times together with an LSM. Because it is intended for use in mountain ar-
eas it needs to be able to accommodate more dimensions of variability than is usual20

in mosaicing techniques used to partition the sub-grid. Besides differing surface and
subsurface properties, the effects of elevation, slope exposition, slope angle and hori-
zon elevation are likely to be of importance. To allow the scalable use of this scheme,
i.e. its application over large mountain ranges, it should employ repeatable and robust
methods to form sub-grid samples. Because the influence of predictor variables (di-25

mensions of sub-grid variability that are accounted for) is not known a priori and may
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change laterally, a method for informed sampling is required in which the importance of
predictor variables on the simulated target variable(s) is evaluated. Model parameters
are given in Table 2 together with default values.

3.1 Pre-processor

The pre-processor configures the sub-grid by creating samples for later simulation in5

the LSM and by determining the membership functions of original 2-D pixels to those
samples. For a given experimental domain this module need only be run once. The
scheme can use several PRED variables from which the sub-grid scheme is con-
structed and usually these include DEM-derived land surface parameters.

3.1.1 Training routine10

The input PREDs are initially clustered using the K -means algorithm to form a prede-
fined number of samples. Scaling of PREDs is important because it affects the relative
number of samples formed along a given dimension. With the scaling of PREDs we
thus influence how finely samples are resolved in which direction, a process that is
important to optimize the number of samples. No scaling could result in e.g. differing15

results with elevation provided in units of meters or kilometres. At this initial stage, a
simple scaling is thus applied which normalises all PREDs to a standard scale under
the assumption that all are of equal importance with respect to simulated TV. Sample
centroids define the topographic and environmental input to the LSM that is run for this
initial set of samples in a training simulation.20

3.1.2 Sample formation by informed clustering

Based on the training routine results, one linear regression model is constructed for
each of n TVs using the whole set of i PREDs as regressors (Eq. 3) using generalised
least squares (GLS). GLS is able to handle PREDs with non-normal distributions and/or
which are partially correlated and therefore is more robust when implemented as an25
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automated method. GLS minimises the squared Mahalanobis distance as opposed the
residual sum of squares, as in regression methods using ordinary least squares.

TVn = PRED1β1 +PREDiβi + ...., (3)

TV = 1...n,

PRED = 1...i .5

The resulting regression coefficients, βi provide an informed scaling of the PREDi for
the clustering algorithm by transforming them into equivalents of the TVn dimension
and unit:

PREDi ,scaled = PREDi ·βi . (4)10

Normalized to a sum of one, these coefficients can be averaged (βmean) to accommo-
date more than one TV. Parameter WTV is an optional weighting function for individual
TVs if extra information exists to justify higher weighting of a TV in the averaging pro-
cess:

βmean =
∑
TV

 β∑
PRED

βPRED

 .WTV, (5)15

TV = 1, ...n.

The set of PREDs, with informed scaling, are re-clustered to provide a predefined num-
ber of samples that are then more effectively distributed with respect to the desired
TVs. The sample centroids now provide the required input to the LSM. Additionally,20

the regression model can be optimised by using disaggregated r2 (Genizi, 1993) ei-
ther manually or automatically, by removing PREDs that contribute less than a stated
threshold to model significance.
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3.1.3 Pre-processor output

A vector of sample weights is calculated according to total membership of pixels to
each sample. This provides the means by which to (a) aggregate TVs to the coarse
grid and, (b) provide a rapid statistical description of sub-grid behaviour using a CDF.
A matrix of membership functions of individual pixels to samples provides a means5

of spatialising results to the fine grid. We employ crisp and fuzzy membership. Crisp
membership implies that pixels may belong to only one sample (that which they are
assigned in clustering). Fuzzy membership allows for varying degrees of membership
to multiple samples. This then accounts to some extent for within sample variance (in
terms of PREDs) that inevitably exists and provides an alternative and smoother means10

of spatialisation at reasonable computational cost.
The final output from the pre-processor is the sub-grid configuration (Fig. 4) as de-

fined by: (A) a small matrix of sample characteristics. These are the environmental
characteristics of each sample used to drive the LSM as well as the aggregated sam-
ple weights used for aggregation to grid level and statistical description of sub-grid15

behaviour. (B) Membership information for the spatialisation of results to the fine grid.
For crisp membership this has the dimensions of the original fine grid (B1), for fuzzy
membership the ID and weight for the s most important samples are stored for each
original pixel (Table 2), increasing the dimensions of this information to 2*s times the
original size (B2). Based on the sub-grid configuration, the LSM is run in 1-D mode for20

each sample.

3.2 Post-processor

Based on the sub-grid configuration, the LSM output is post-processed. The result of
this can either be (a) summary statistics with respect to the coarse grid describing its
sub-grid variability by a CDF or derived quantities; or (b) data spatialised to the original25

fine grid; or (c) data estimated for a list of discrete points to support validation studies
using ground truth data. The coarse-grid summary statistics are computed according
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to the aggregated membership functions of individual pixels to each sample. TVs are
spatialised to fine grid resolution according to the membership functions (crisp or fuzzy)
of each pixel to each significant cluster. This accounts for the sub-grid heterogeneity
that exists between cluster centroids.

4 Simulation experiments5

4.1 Data and tools

The high-resolution input into the scheme is a 25 m digital elevation model (DEM,
obtained from Swisstopo). The DEM used in this study covers a test area of
25.6×25.6 km (∼106 pixels) in the south-east of Switzerland (Fig. 5). The study area
represents a good example of strongly variable mountain topography (elevation range10

1556–4043 m a.s.l.) with which to test the performance of the scheme. Land surface
parameters, slope (degrees), aspect (degrees) and sky view factor (fraction, 0–1) are
derived from the DEM using SAGA-GIS. Driving meteorology is provided by a high el-
evation MeteoSwiss synoptic weather station (Corvatsch) at 3315 m a.s.l. We use an
hourly time series of air temperature, relative humidity, global radiation, wind speed,15

wind direction and precipitation over the period 1 July 2009 to 1 July 2010. We em-
ploy the open-source LSM GEOtop (Endrizzi and Marsh, 2010; Dall’Amico et al., 2011;
Rigon et al., 2006) which is a physically based model that simulates the coupled en-
ergy and water balance with phase change in soil, a multi-layer snow pack and surface
energy fluxes in 1-D and distributed 2-D modes, which has been designed specifically20

for application in mountain regions. The model is run on an hourly timestep. We apply
two years of spin up and then generate 1 yr of data. All tools were programmed using
the open-source statistical software R.
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4.2 Testing strategy

The primary aim of this evaluation is to test how well TopoSUB is able to reproduce re-
sults of a distributed model. This is done by comparing results obtained from TopoSUB
(SUB) with results from a distributed LSM simulation on a regular 2-D grid (BASE).
Both runs use the same LSM, GEOtop. The distributed runs have diverse spatial res-5

olutions ranging from 25 m (106 cells) to 25 km (1 cell). The lumped sub-grid model is
also run at differing resolution i.e. different levels of detail (number of samples) in the
sampling of the sub-grid. The sub-grid scheme is evaluated with respect to the 25 m
distributed simulation in all experiments, which we consider to be the baseline in this
experiment, being the most finely discretised representation of the experiment domain.10

Experiments presented in results are: (Sect. 5.1) grid aggregated results compared di-
rectly with corresponding statistics of BASE. For this, the mean and standard deviation
as well as the 25th and 75th percentiles are calculated; (Sect. 5.2) statistical descrip-
tion of sub-grid behaviour is evaluated by comparing the CDF of SUB simulation to
CDF of BASE simulations using KS-test; and, (Sect. 5.3) fuzzy spatialised results are15

compared to BASE using the r-value and NRMSE to assess the predictive power of
the scheme at the grid cell level. Finally, other aspects of TopoSUB performance are
presented (Sects. 5.4–5.5). To keep computation times for the 25 m resolution BASE
simulation reasonable, water movement in the soil was not considered.

4.3 Model settings20

For testing, input PREDs of elevation, aspect, slope and sky view factor are used in
the clustering algorithm, all computed from the input DEM at 25 m resolution. In all ex-
periments we simulate output response variables of air temperature (Tair, ◦C), ground
surface temperature at 10 cm depth (GST, ◦C), snow water equivalent (SWE, mm) and
incoming shortwave radiation (SWin, W m−2). These were chosen as suitable variables25

with which to test the performance of the scheme in terms of representing both surface
processes and energy fluxes. Air temperature represents a simple check of the scheme
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due to straightforward relationship with elevation in this study (using a standard lapse
rate). SWin represents how well the scheme is able to represent topography with re-
spect to parameters relevant to radiation modelling. Snow water equivalent and GST
both represent important physical processes in mountain areas. TVs are analysed as
mean annual values in all cases. Model parameters are set per default values in Ta-5

ble 2.

5 Results

5.1 Grid aggregated output

Grid aggregated results are analysed as deviations from the baseline distributed grid
for increasing sample numbers (lumped scheme: samples, gridded scheme: pixels)10

that represent computational cost (Fig. 6). The simulated TVs approximate the high-
resolution distributed results well requiring 103–104 times less computations. The con-
vergence of results for the tested TVs at 100–200 samples in the sub-grid scheme
suggests that we are able to reach a stable performance. A convergence of results
with resolution is not observed in distributed simulations (except for the simple vari-15

able of air temperature) underscoring the importance of attention to scaling issues.
Figure 6 also shows the improvement in aggregated information between a grid aver-
age computation (1 sample), as is common in climate models, and a 200 sample SUB
simulation, that is capable of approximating the BASE simulation (which is explicitly
modelling sub-grid processes).20

5.2 Statistical description of sub-grid behaviour

CDFs are calculated using aggregated sample weights and provide a rapid description
of sub-grid behaviour by presenting the distribution of simulated TVs without the need
for spatialisation. This technique enables rapid assessments such as percentage of
permafrost in the simulation domain or the total quantity of SWE. A good fit is seen25
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in all cases (Fig. 7). These statistics can be readily presented against topographic
attributes to give more detailed understanding of the sub-grid e.g. permafrost extent by
elevation band or exposures.

5.3 Spatialised output

Spatialised results are obtained by distributing LSM results based on the fuzzy mem-5

bership of each pixel, resulting in a 25 m resolution mapping of TVs. Based on conver-
gence of the NRMSE and correlation coefficient of the lumped scheme it can be seen
that the majority of performance is gained until 64 samples, after 258 samples a stable
performance is achieved (Fig. 8). This represents a reduction of computational effort
of three to four orders of magnitude compared with distributed simulation BASE (de-10

pending on required quality level), a similar result to Sect. 5.1. Figure 9 gives density
scatter plots of all TVs for 258 samples. A good correlation is reported in all cases. The
lumped scheme is able to reproduce the distributed simulation with an NRMSE of 12–
28 % depending on the TV. Figure 10 provides a visual comparison of the simulation
results for GST.15

5.4 Model stability

Figure 11 shows results of 40 simulations of TopoSUB at each of 4 resolutions: 25,
50, 100, 200 samples. The purpose being to investigate stability of the tool and any
resolution dependency of its stability. Results of deviation of each simulation from mean
values of mean and quantiles 25/75 of all 40 simulations indicate reasonable stability20

even at low resolutions as indicated by a low absolute deviation. A significant increase
in stability is seen between 25–100 samples in all variables tested.

5.5 TopoSUB configurations

Figure 12 gives NRMSE for 128 sample SUB simulations for configurations: “fuzzy in-
formed”, “fuzzy simple”, “crisp informed”, “crisp simple”. All TV results improve with25
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fuzzy membership. All TV results except SWin improve with informed scaling. This is
because all TVs are heavily influenced by PRED “elevation”, except for SWin. During
calculation of βmean SWin specific PREDs (e.g. sine of aspect) are down-weighted in
favour of elevation – causing reduced performance for SWin results. This can be cor-
rected for using the parameter WTV (Eq. 5) depending upon user application. These5

results demonstrate that informed scaling and fuzzy membership are both useful tools
to be applied in the pre-processor stage. Time-cost associated with these methods is
incurred only once during pre-processing and benefit (improved performance) is re-
ceived multiple times with LSM output.

6 Conclusions10

This paper has described the TopoSUB scheme and has evaluated its performance
by comparison with a distributed model, as well as given first indication of parameter
choice. We have obtained promising results for the use of TopoSUB as robust and
efficient tool for large area numerical simulations of processes in complex mountain
topography. The informed sampling procedure is thought to be an appropriate method15

by which to sample a multidimensional sub-grid space without a priori knowledge of
the relative importance of dimensions, with respect to simulated TVs. In the presented
case, a sample number of approximately 64 samples proved sufficient to describe the
wide range of elevations, slope expositions, slope angle and horizon elevations present
in the study area, while 258 samples approximated well the results of a distributed 2-D20

simulation of 25 m resolution. While spatialisation proves a valuable tool for site specific
studies, CDF’s of sample results provide a rapid assessment of sub-grid behaviour.

There are obvious limitations which must be acknowledged due to the tool being
based on a 1-D configuration, namely lateral mass transfers (such as snow redistribu-
tion, although this is commonly neglected even in distributed models) and flow mod-25

elling (surface/subsurface); processes which are not easily represented in a 1-D model.
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The demonstrated ability of TopoSUB to efficiently approximate a distributed model
as a reduced series of 1-D samples has several important applications:

1. Numerical, physically based models are important tools in furthering process un-
derstanding, but are inherently prone to a wealth of uncertainties, including ini-
tial and boundary conditions, parameterizations, model physics and parameter5

choice (Beven, 2001). Intensive sensitivity studies are often needed to define pa-
rameter values, and uncertainty usually needs to be quantified. TopoSUB would
allow both of these tasks to be undertaken with little compromise on quality of re-
sult while focusing computing resources on long temporal scale or multiple repeat
simulations.10

2. TopoSUB is able to approximate the results of of a distributed grid that have been
aggregated at coarse grid level. This suggests interesting prospects for the im-
provement of the representation of mountain fine-scale processes in coarse grid
models.

3. TopoSUB can be used together with grid-computing infrastructure that is becom-15

ing increasingly common in many disciplines in order to parallelise a numerical
model as an array of 1-D tasks.

We envisage TopoSUB to be a useful tool in a wide range of numerical modelling
applications in complex terrain, due to flexible choice of inputs, numerical models and
output options.20

Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/5/1041/2012/
gmdd-5-1041-2012-supplement.zip.
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Table 1. Speeds t (min) of K -means in terms of parameters, cluster number k, pixel number
p, and nstart n. The K -means algorithm run time is less sensitive to cluster number (test 1,2)
than to pixel number (test 1,3). Speed up is obtained by sampling (test 4+5 = 2.16 mins) and
represents approximately a ten fold speed up based on 10:1 sampling ratio.

Test p k n t

1 1 m 64 10 22.23
2 1 m 32 10 18.99
3 250 k 64 10 4.71
4 100 k 64 10 1.13
5 1 m 64 1 1.03
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Table 2. Parameters used in TopoSUB.

name description default value

K number of samples 128
PREDs input predictors (ele, slp, asp, svf)
TV target variables (GST, SWE, SWin, Tair)
M fuzzy membership exponent 1.4
iter.max maximum iterations of K -means 20
nstart1 number of random starts for sample K -means 10
nstart2 number of random starts for all data K -means 1
µmax number of membership dimensions 20
WTV weighting of TV in informed scale (1,1,1,1)
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Fig. 1. The scale problem TopoSUB addresses – (A) the complex geometry of mountain topog-
raphy is aggregated to a mean value in coarse grids which does not necessarily account for
sub-grid heterogeneity (B) application of numerical models requires a fine grid in order to ac-
count for the effect of this heterogeneity, which is computationally expensive. TopoSUB allows
for application of numerical models over large areas through a lumped approach that samples
the most important aspects of this heterogeneity.
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Fig. 2. The effect of maximum allowed iterations (iter.max) and number of random starts (nstart)
of Kmeans on total within sum of squares (WSS) of resulting clusters (k = 128).
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Fig. 3. Structure of the TopoSUB scheme with its two main modules: (1) pre-processor config-
ures the sub-grid (runs once), (2) post-processor (runs multiple times together with the LSM).
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Fig. 2. The effect of maximum allowed iterations (iter.max) and
number of random starts (nstart) of Kmeans on total within sum of
squares (WSS) of resulting clusters (k=128).
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Fig. 3. Structure of the TopoSUB scheme with its two main
modules: pre-processor configures the sub-grid (runs once), post-
processor (runs multiple times together with the LSM.
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Fig. 4. Scheme of pre-processor output options, (A) no spatial,
sample matrix of sample weights and environmental characteristics;
(B1) spatial with crisp membership, single layer maps; and, (B2)
spatial with fuzzy membership, multilayer maps with n number of
chosen fuzzy membership dimensions.

N

Fig. 5. Study region (25.6km x 25.6km) in the upper Engadin,
Switzerland. Location of driving climate station in red.

Fig. 4. Scheme of pre-processor output options, (A) no spatial, sample matrix of sample weights
and environmental characteristics; (B1) spatial with crisp membership, single layer maps; and,
(B2) spatial with fuzzy membership, multilayer maps with n number of chosen fuzzy member-
ship dimensions.
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Fig. 5. Study region (25.6 × 25.6 km) in the upper Engadin, Switzerland. Location of driving
climate station in red.
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Fig. 6. Aggregated statistics: mean (in bold), 25th and 75th percentile (non-bold) of the sub-
grid scheme at resolutions 1–1024 samples (blue) and distributed simulations (red) spanning
resolutions of 4–106 pixels. Vertical lines indicate 16 and 128 samples. A stable performance
is reached after the 128 sample level in all cases. TopoSUB is able to approximate aggregated
2-D simulation at 104 less computations. Note logarithmic × scale.
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Fig. 7. CDFs of mean annual simulation results derived from the sub-grid scheme (blue) based
on 258 samples and a distributed simulation (red) based on 106 pixels. A good fit is reported
by a KS-test (D). Aggregated summary statistics can be computed directly from the CDF, for
example percentage area with MAGST <0 ◦C (e.g. permafrost) (red dotted line).
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Fig. 8. The predictive power of the lumped scheme is assessed using the (a) r-value (b) NRMSE
at resolutions 2–400 samples with respect to baseline distributed grid simulation. The majority
of performance is gained until 64 samples (first dotted line). After 258 samples a reasonably
stable performance is achieved (second dotted line).
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Fig. 9. Density scatter plot of 1-D/2-D after informed scaling and fuzzy spatialisation at 258
samples. All TVs are reproduced with low error as reported by r-value and RMSE (computed
over 106 pixels).
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Fig. 10. GST computed at resolution of 25 m by distributed (2-D) and TopoSUB (1-D) over
25×25 km (top) and detailed view of 2.5×2.5 km (bottom). TopoSUB reproduces the spatial
patterns of distributed simulation well, even at pixel resolution.
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Fig. 11. Deviation from mean values of mean and quantiles 25/75 for 40 runs of TopoSUB.
Results at resolutions of 25–200 samples indicate reasonable stability even at low resolutions.
A significant increase in stability is seen between 25–100 samples in all variables tested.
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Fig. 12. NRMSE for 128 sample TopoSUB simulations for configurations: “fuzzy informed”,
“fuzzy simple”, “crisp informed”, “crisp simple”. All TV results improve with fuzzy membership.
All TV results except SWin improve with informed scaling.
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